-->

شعاع السرعة و شعاع التسارع (2) ..جملة المقارنة الديكارتية

تذكرة : 
يعطى شعاع الموضع في جملة المقارنة الديكارتية : 

ON =x. i +y. j

شعاع السرعة في جملة المقارنة الديكارتية : 
بما أن  شعاع الموضع في جملة المقارنة الديكارتية : 

ON =x. i +y. j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGpbGaamOtaaGaay51GaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caWG4bGaaGPaVlaaykW7caGGUaGaaGPaVpaaFiaabaGaamyAaaGaay51GaGaaGPaVlabgUcaRiaaykW7caWG5bGaaGPaVlaac6cacaaMc8+aa8HaaeaacaWGQbaacaGLxdcaaaa@567F@
بما أن شعاع السرعة هو مشتق شعاع الموضع ..فإن : 
v = d ON dt =( ON ) ' t MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWG2bWaaSbaaSqaaaqabaaakiaawEniaiabg2da9maalaaabaGaamizamaaFiaabaGaam4taiaad6eaaiaawEniaaqaaiaadsgacaWG0baaaiabg2da9iaacIcadaWhcaqaaiaad+eacaWGobaacaGLxdcacaGGPaGaai4jamaaBaaaleaacaWG0baabeaaaaa@47BF@   وبالتالي السرعة :

v = v x . i + v y . j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWG2bWaaSbaaSqaaaqabaaakiaawEniaiabg2da9iaadAhadaWgaaWcbaGaamiEaaqabaGccaaMb8UaaiOlaiaaykW7daWhcaqaaiaadMgadaWgaaWcbaaabeaaaOGaay51GaGaaGPaVlabgUcaRiaaykW7caWG2bWaaSbaaSqaaiaadMhaaeqaaOGaaGPaVlaac6cacaaMb8UaaGjbVpaaFiaabaGaamOAamaaBaaaleaaaeqaaaGccaGLxdcaaaa@5120@
حيث ان مركبتي شعاع السرعة هما :
v :{ v x =(x) ' t v y =(y) ' t MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWG2bWaaSbaaSqaaaqabaaakiaawEniaiaacQdacaaMc8UaaGPaVlaaygW7daGabaabaeqabaGaamODamaaBaaaleaacaWG4baabeaakiabg2da9iaacIcacaWG4bGaaiykaiaacEcadaWgaaWcbaGaamiDaaqabaaakeaacaWG2bWaaSbaaSqaaiaadMhaaeqaaOGaeyypa0JaaiikaiaadMhacaGGPaGaai4jamaaBaaaleaacaWG0baabeaaaaGccaGL7baaaaa@4E42@
وتعطى شدة "طويلة" شعاع السرعة - القيمة العددية المطلقة -  بالعلاقة : 

v= v x 2 + v y 2 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabg2da9maakaaabaGaamODamaaBaaaleaacaWG4baabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadAhadaWgaaWcbaGaamyEaaqabaGcdaahaaWcbeqaaiaaikdaaaaabeaaaaa@3F40@


شعاع التسارع في جملة  المقارنة الديكارتية : 
يعطى شعاع السرعة في جملة المقارنة الديكارتية بالعلاقة : 
v = v x . i + v y . j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWG2bWaaSbaaSqaaaqabaaakiaawEniaiabg2da9iaadAhadaWgaaWcbaGaamiEaaqabaGccaaMb8UaaiOlaiaaykW7daWhcaqaaiaadMgadaWgaaWcbaaabeaaaOGaay51GaGaaGPaVlabgUcaRiaaykW7caWG2bWaaSbaaSqaaiaadMhaaeqaaOGaaGPaVlaac6cacaaMb8UaaGjbVpaaFiaabaGaamOAamaaBaaaleaaaeqaaaGccaGLxdcaaaa@5120@
وبما أن شعاع التسارع هو مشتق شعاع السرعة .. فإن : 
a = d v dt =( v ) ' t =( ON )' ' t MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGHbWaaSbaaSqaaaqabaaakiaawEniaiabg2da9maalaaabaGaamizamaaFiaabaGaamODamaaBaaaleaaaeqaaaGccaGLxdcaaeaacaWGKbGaamiDaaaacqGH9aqpcaGGOaWaa8HaaeaacaWG2bWaaSbaaSqaaaqabaaakiaawEniaiaacMcacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaaiikamaaFiaabaGaam4taiaad6eaaiaawEniaiaacMcacaGGNaGaai4jamaaBaaaleaacaWG0baabeaaaaa@4EFD@أي التسارع : 
a = a x . i + a y . j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGHbWaaSbaaSqaaaqabaaakiaawEniaiabg2da9iaadggadaWgaaWcbaGaamiEaaqabaGccaaMb8UaaiOlaiaaykW7daWhcaqaaiaadMgadaWgaaWcbaaabeaaaOGaay51GaGaaGPaVlabgUcaRiaaykW7caWGHbWaaSbaaSqaaiaadMhaaeqaaOGaaGPaVlaac6cacaaMb8UaaGjbVpaaFiaabaGaamOAamaaBaaaleaaaeqaaaGccaGLxdcaaaa@50E1@
حيث أن مركبتي شعاع التسارع هما : 
a :{ a x =( v x ) ' t =(x)' ' t a y =( v y ) ' t =(y)' ' t MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGHbWaaSbaaSqaaaqabaaakiaawEniaiaacQdacaaMc8UaaGPaVlaaygW7daGabaabaeqabaGaamyyamaaBaaaleaacaWG4baabeaakiabg2da9iaacIcacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiaacEcadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaGGOaGaamiEaiaacMcacaGGNaGaai4jamaaBaaaleaacaWG0baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqabaGccqGH9aqpcaGGOaGaamODamaaBaaaleaacaWG5baabeaakiaacMcacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaaiikaiaadMhacaGGPaGaai4jaiaacEcadaWgaaWcbaGaamiDaaqabaaaaOGaay5Eaaaaaa@5C28@
وتعطى شدة " طويلة " شعاع التسارع  -أي قيمته العددية المطلقة - بالعلاقة : 
a= a x 2 + a y 2 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabg2da9maakaaabaGaamyyamaaBaaaleaacaWG4baabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaamyEaaqabaGcdaahaaWcbeqaaiaaikdaaaaabeaaaaa@3F01@

تمرين : 
يعطى شعاع الموضع لمتحرك في الجملة الديكارتية بالعلاقة : 
O N =( t 3 2 t 2 +t). i +(3 t 2 +t). j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGpbGaamOtamaaBaaaleaaaeqaaaGccaGLxdcacqGH9aqpcaGGOaGaamiDamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaikdacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiDaiaacMcacaaMb8UaaiOlaiaaykW7daWhcaqaaiaadMgadaWgaaWcbaaabeaaaOGaay51GaGaaGPaVlabgUcaRiaaykW7caGGOaGaaG4maiaadshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG0bGaaGPaVlaacMcacaGGUaGaaGzaVlaaysW7daWhcaqaaiaadQgadaWgaaWcbaaabeaaaOGaay51Gaaaaa@5C02@
1- استنتج عبارة شعاع السرعة و شعاع التسارع . 
2- حدد موضع المتحرك في اللحظة t=2s .. و أحسب قيمة السرعة و قيمة التسارع في تلك اللحظة . 


الحل : 
1- شعاعا السرعة و التسارع
  • شعاع السرعة :  نشتق شعاع الموضع للحصول على شعاع السرعة " نشتق احداثيي شعاع الموضع " : 
v =( O N ) ' t =(3 t 2 4 t +1). i +(6t+1). j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWG2bWaaSbaaSqaaaqabaaakiaawEniaiabg2da9iaacIcadaWhcaqaaiaad+eacaWGobWaaSbaaSqaaaqabaaakiaawEniaiaacMcacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaaiikaiaaiodacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiaadshadaahaaWcbeqaaaaakiabgUcaRiaaigdacaGGPaGaaGzaVlaac6cacaaMc8+aa8HaaeaacaWGPbWaaSbaaSqaaaqabaaakiaawEniaiaaykW7cqGHRaWkcaaMc8UaaiikaiaaiAdacaWG0bGaey4kaSIaaGymaiaaykW7caGGPaGaaiOlaiaaygW7caaMe8+aa8HaaeaacaWGQbWaaSbaaSqaaaqabaaakiaawEniaaaa@61B6@  
  • شعاع التسارع : ونشتق شعاع السرعة بالنسبة للزمن للحصول على شعاع التسارع : 
a =( v ) ' t =(6t4). i +(6). j MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGHbWaaSbaaSqaaaqabaaakiaawEniaiabg2da9iaacIcadaWhcaqaaiaadAhadaWgaaWcbaaabeaaaOGaay51GaGaaiykaiaacEcadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaGGOaGaaGOnaiaadshacqGHsislcaaI0aGaaiykaiaaygW7caGGUaGaaGPaVpaaFiaabaGaamyAamaaBaaaleaaaeqaaaGccaGLxdcacaaMc8Uaey4kaSIaaGPaVlaacIcacaaI2aGaaGPaVlaacMcacaGGUaGaaGzaVlaaysW7daWhcaqaaiaadQgadaWgaaWcbaaabeaaaOGaay51Gaaaaa@5AA2@  

 2- في اللحظة t=2s
  •  تحديد الموضع :  
من احداثيي الموضع : 
x= t 3 2 t 2 +t= 2 3 2× 2 2 +2=2m y=3 t 2 +t=3× 2 2 +2=14m MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4bGaeyypa0JaamiDamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaikdacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiDaiabg2da9iaaikdadaahaaWcbeqaaiaaiodaaaGccqGHsislcaaIYaGaey41aqRaaGOmamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqGH9aqpcaaIYaGaamyBaaqaaiaadMhacqGH9aqpcaaIZaGaamiDamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadshacqGH9aqpcaaIZaGaey41aqRaaGOmamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqGH9aqpcaaIXaGaaGinaiaad2gaaaaa@5D12@ أي الموضع هو : (2,14)N


  • تحديد قيمة السرعة : 
من احداثيي السرعة : 


v x =3 t 2 4 t +1=3× 2 2 4× 2 +1=5m. s 1 v y =6t+1=6×2+1=13m. s 1 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaaG4maiaadshadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaI0aGaamiDamaaCaaaleqabaaaaOGaey4kaSIaaGymaiabg2da9iaaiodacqGHxdaTcaaIYaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiabgEna0kaaikdadaahaaWcbeqaaaaakiabgUcaRiaaigdacqGH9aqpcaaI1aGaamyBaiaac6cacaWGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaamODamaaBaaaleaacaWG5baabeaakiabg2da9iaaiAdacaWG0bGaey4kaSIaaGymaiaaykW7cqGH9aqpcaaI2aGaey41aqRaaGOmaiabgUcaRiaaigdacaaMc8Uaeyypa0JaaGymaiaaiodacaWGTbGaaiOlaiaadohadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaaa@6951@ وبالتالي قيمة السرعة : 
v= v x 2 + v y 2 v= 5 2 + 13 2 = 194 v=13.93m. s 1 14m. s 1 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG2bGaeyypa0ZaaOaaaeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamODamaaBaaaleaacaWG5baabeaakmaaCaaaleqabaGaaGOmaaaaaeqaaaGcbaGaamODaiabg2da9maakaaabaGaaGynamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaIZaWaaWbaaSqabeaacaaIYaaaaaqabaGccqGH9aqpdaGcaaqaaiaaigdacaaI5aGaaGinaaWcbeaaaOqaaiaadAhacqGH9aqpcaaIXaGaaG4maiaac6cacaaI5aGaaG4maiaad2gacaGGUaGaam4CamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgIKi7kaaigdacaaI0aGaamyBaiaac6cacaWGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaaaaaa@5B8A@  
  • تحديد قيمة التسارع : 
من احداثيي التسارع : 
a x =6t4=6×24=8m. s 2 a y =6m. s 2 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaaGOnaiaadshacqGHsislcaaI0aGaeyypa0JaaGOnaiabgEna0kaaikdacqGHsislcaaI0aGaeyypa0JaaGioaiaad2gacaGGUaGaam4CamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaOqaaiaadggadaWgaaWcbaGaamyEaaqabaGccqGH9aqpcaaI2aGaaGPaVlaad2gacaGGUaGaam4CamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaaaa@5303@ وبالتالي قيمة التسارع : 
a= a x 2 + a y 2 a= 8 2 + 6 2 = 100 a=10m. s 2 MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHbGaeyypa0ZaaOaaaeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaWG5baabeaakmaaCaaaleqabaGaaGOmaaaaaeqaaaGcbaGaamyyaiabg2da9maakaaabaGaaGioamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdadaahaaWcbeqaaiaaikdaaaaabeaakiabg2da9maakaaabaGaaGymaiaaicdacaaIWaaaleqaaaGcbaGaamyyaiabg2da9iaaigdacaaIWaGaamyBaiaac6cacaWGZbWaaWbaaSqabeaacqGHsislcaaIYaaaaaaaaa@5086@  
أي في اللحظةt=2s  يكون المتحرك في الموضع (2,14) و سرعته14m.s-1  و تسارعه 10m.s-2


ملاحظة هامة تذكرة بقواعد الاشتقاق وأمثلة عليها : 

[ ( a ) ' t =0 ( a.t+b ) ' t =a ( t n ) ' t =n. t n1 ( a.u ) ' t =a.( u ) ' t ( u+v ) ' t =( u ) ' t +( v ) ' t ] Ex, ( ( 2 ) ' t =0 ( 3.t4 ) ' t =3 ( t 3 ) ' t =3. t 31 =3. t 2 ( 2. t 4 ) ' t =2.( t 4 ) ' t =2×4 t 41 =8 t 3 ( 2 t 3 + t 2 ) ' t =( 2 t 3 ) ' t +( t 2 ) ' t =6 t 2 +2t ) a,b,n=const u,v=f(t) MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqipv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWadaabaeqabaWaaeWaaeaacaWGHbaacaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaakiabg2da9iaaicdaaeaadaqadaqaaiaadggacaGGUaGaamiDaiabgUcaRiaadkgaaiaawIcacaGLPaaacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaamyyaaqaamaabmaabaGaamiDamaaCaaaleqabaGaamOBaaaaaOGaayjkaiaawMcaaiaacEcadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaWGUbGaaiOlaiaadshadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaGcbaWaaeWaaeaacaWGHbGaaiOlaiaadwhaaiaawIcacaGLPaaacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0Jaamyyaiaac6cadaqadaqaaiaadwhaaiaawIcacaGLPaaacaGGNaWaaSbaaSqaaiaadshaaeqaaaGcbaWaaeWaaeaacaWG1bGaey4kaSIaamODaaGaayjkaiaawMcaaiaacEcadaWgaaWcbaGaamiDaaqabaGccqGH9aqpdaqadaqaaiaadwhaaiaawIcacaGLPaaacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaey4kaSYaaeWaaeaacaWG2baacaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaaaaGccaGLBbGaayzxaaWaa4ajaSqaaiaadweacaWG4bGaaiilaaqabOGaayPKHaWaaeWaaqaabeqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaiaacEcadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcaaIWaaabaWaaeWaaeaacaaIZaGaaiOlaiaadshacqGHsislcaaI0aaacaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaakiabg2da9iaaiodaaeaadaqadaqaaiaadshadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaeyypa0JaaG4maiaac6cacaWG0bWaaWbaaSqabeaacaaIZaGaeyOeI0IaaGymaaaakiabg2da9iaaiodacaGGUaGaamiDamaaCaaaleqabaGaaGOmaaaaaOqaamaabmaabaGaeyOeI0IaaGOmaiaac6cacaWG0bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaakiabg2da9iabgkHiTiaaikdacaGGUaWaaeWaaeaacaWG0bWaaWbaaSqabeaacaaI0aaaaaGccaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaakiabg2da9iabgkHiTiaaikdacqGHxdaTcaaI0aGaamiDamaaCaaaleqabaGaaGinaiabgkHiTiaaigdaaaGccqGH9aqpcqGHsislcaaI4aGaamiDamaaCaaaleqabaGaaG4maaaaaOqaamaabmaabaGaaGOmaiaadshadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWG0bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaakiabg2da9maabmaabaGaaGOmaiaadshadaahaaWcbeqaaiaaiodaaaaakiaawIcacaGLPaaacaGGNaWaaSbaaSqaaiaadshaaeqaaOGaey4kaSYaaeWaaeaacaWG0bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaai4jamaaBaaaleaacaWG0baabeaakiabg2da9iaaiAdacaWG0bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadshaaaGaayjkaiaawMcaaaqaaiaadggacaGGSaGaamOyaiaacYcacaWGUbGaeyypa0Jaam4yaiaad+gacaWGUbGaam4CaiaadshaaeaacaWG1bGaaiilaiaadAhacqGH9aqpcaWGMbGaaiikaiaadshacaGGPaaaaaa@E156@  

حيث أن : 
  • a,b,n ثوابت عددية .
  •  u,v توابع لـ t .